Abstract
While Black Sigatoka Leaf Disease (Mycosphaerella fijiensis) has arguably been the most important pathogen affecting the banana industry over the past 50 years, there are no quantitative estimates of what risk factors determine its spread across the globe, nor how its spread has affected banana producing countries. This study empirically models the disease spread across and its impact within countries using historical spread timelines, biophysical models, local climate data, and country level agricultural data. To model the global spread a empirical hazard model is employed. The results show that the most important factor affecting first time infection of a country is the extent of their agricultural imports, having increased first time disease incidence by 69% points. In contrast, long distance dispersal due to climatic factors only raised this probability by 0.8% points. The impact of disease diffusion within countries once they are infected is modelled using a panel regression estimator. Findings indicate that under the right climate conditions the impact of Black Sigatoka Leaf Disease can be substantial, currently resulting in an average 3% reduction in global annual production, i.e., a loss of yearly revenue of about USD 1.6 billion. View Full-Text
Keywords: bananas; Black Sigatoka Leaf Disease; climate; global spread & impact